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Statistics, condensation, and the Anderson-Higgs mechanism: Worldline path integral view

Jian-Huang She,* Darius Sadri,” and Jan Zaanen*
Instituut Lorentz voor de Theoretische Natuurkunde, Universiteit Leiden, P.O. Box 9506, NL-2300 RA Leiden, The Netherlands
(Received 9 July 2008; published 7 October 2008)

We explain, in the first-quantized path integral formalism, the mechanism behind the Anderson-Higgs effect
for a gas of charged bosons in a background magnetic field, and we then use the method to prove the absence
of the effect for a gas of fermions. The exchange statistics are encoded via the inclusion of additional Grass-
mann coordinates in a manner that leads to a manifest worldline supersymmetry. This extra symmetry is key to
demonstrating the absence of the effect for charged fermions.
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I. INTRODUCTION

The Meissner effect,! the expulsion of magnetic fields
from superconducting regions, is a salient feature of super-
conductivity which distinguishes it from perfect conductiv-
ity. It can be described in a phenomenological way via the
London equations,? but a microscopic understanding requires
accounting for the pairing mechanism?~ leading to conden-
sation in the ground state, and the concomitant generation of
an effective mass for the photon.®” The modern viewpoint
takes the spontaneous breaking of a gauge invariance as the
central idea, though of course this is strictly speaking not
correct, as a gauge symmetry can never be broken, but rather
serves as a good description in a perturbative expansion
around the breaking of a global symmetry. The breaking of a
global symmetry is also relevant to the study of Bose-
Einstein condensation. An understanding of this phenomena,
in the case of strongly interacting helium and the superfluid
transition, was advanced by the introduction of the methods
of first-quantized path integrals,®° wherein it is understood
as the proliferation of worldlines of bosons.!®!! In fact, the
partition function for the worldlines can be mapped onto a
second-quantized Euclidean path integral (over fields) of the
Landau-Ginzburg type.

The idea of spontaneously broken gauge symmetry has
been used to great advantage in high-energy physics. It had
long been assumed that a renormalizable theory of massive
vector bosons could not be gauge invariant until it was
suggested'?~!7 that a microscopic gauge-invariant theory in-
volving massless vector bosons could still account for mas-
sive vector bosons at low energy (such as the W= and Z° in
electroweak theory) if the symmetry gauged by such modes
is spontaneously broken at some scale (assumed to be around
a few hundred GeV for electroweak theory). This realization
guided the construction of the electroweak theory,'®!® now a
cornerstone of the standard model of particle physics.

In electroweak theory the symmetry breaking is driven by
condensation of a bosonic Higgs field, the search for which
is one of the main motivations for recent efforts in experi-
mental high-energy physics. Various technical issues (such as
the hierarchy problem) have led to the suggestion that the
Higgs particle is not in fact elementary but gives an effective
description of some as yet unknown underlying physics
(such as technicolor?’), in much the same way that supercon-
ductivity is often described as Bose-Einstein condensation of
bound Cooper pairs.?!
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One might wonder if this mechanism is specific to bosons,
or whether it can be realized using fermionic constituents. In
relativistically invariant systems, condensation of fermionic
operators would lead to a breaking of Lorentz invariance.
More generally such a condensation leads to a vacuum ex-

pectation value for the fields of the form (0|0|0)=v, with |0)

as the vacuum state of the system and O as either a bosonic
or fermionic operator. Since fermionic operators connect
bosonic states to fermionic ones and vice versa, and it as-
sumed that the vacuum state has a definite character (in fact
nearly always assumed bosonic), the vacuum expectation
value (vev) v must necessarily vanish. This argument shows
that spontaneous symmetry breaking driven by fermions (if
at all possible) must take a form different from the familiar
picture described in terms of bosonic order parameters. In
fact this argument can also be made in the sense of superse-
lection rules, which limit the allowed possible observations
made on a quantum system by disallowing matrix elements
between certain classes of states and separating the Hilbert
space into superselection sectors from which linear combina-
tions of basis vectors cannot be made. It has been
suggested?? that a superselection rule exists which obstructs
the assembling of states which are superpositions of bosons
and fermions. Since a coherent state of fermions would nec-
essarily mix both bosonic and fermionic statistics, it is then
not possible to construct condensates of fermions. In fact, the
question of whether such a superselection rule is operative is
one to be determined by experiment. It has recently been
proposed?® that observation of coherent superpositions of
even and odd numbers of fermions in mesoscopic quantum
dots can be used as a test of supersymmetry.

Considering the importance of and the many mysterious
issues surrounding the mechanism of spontaneous symmetry
breaking, it is valuable to have an alternative view of it. Here
we will explore the formalism due to Feynman,®® where one
considers a representation in terms of the worldline path in-
tegral. The indistinguishability of the bosons translates into
the recipe that one has to trace over all possible ways the
worldlines can wind around the periodic imaginary time axis.
At the temperature at which the average of the topological
winding number w becomes macroscopic, limy_,..(w)/N
#0, the system undergoes a phase transition either to a
Bose-Einstein condensate or a superfluid. Bose-Einstein con-
densation means that a macroscopic number of particles
“share the same worldline” with difference between Bose-
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Einstein condensation (BEC) and superfluidity being that in
the latter this condensate is somewhat depleted. This formal-
ism turns out to be very efficient for numerical calculation of
properties of strongly interacting bosonic systems such as
helium,*!%11 where it is also shown that the average winding
number corresponds directly to the superfluid density.

It is more difficult but perhaps even more interesting to
consider the fermionic particles in this formalism. One can
easily show?* that below the Fermi temperature, worldlines
with macroscopic winding number also proliferate in fermi-
onic systems. This leads to a puzzle: The macroscopic world-
lines lead to a Meissner effect, via the Anderson-Higgs
mechanism, in charged bosonic systems, but surely such phe-
nomenon cannot happen in charged fermionic systems.?

It is the aim of this paper to show in the worldline for-
malism, in a certain limit, that particles obeying fermionic
statistics cannot drive an Anderson-Higgs transition. In Sec.
IT we begin by recalling the single-particle path integral for a
spinless boson, which we couple to a background magnetic
field, and write the partition function for the many-body sys-
tem, from which we compute the second-order perturbative
correction to the effective action. Focusing on a special sub-
class of winding modes, we demonstrate the appearance of a
mass for the magnetic field. We then generalize this logic to
the case of a spin-1/2 particle by way of introduction of
appropriate terms in the action for Grassmannian degrees of
freedom coupled to the particle worldlines. Underlying our
observation on the behavior of fermionic systems in this lan-
guage is the existence of a worldline (though not target
space, where the particle trajectory is embedded) supersym-
metry. The inclusion of the particle statistics leads to an ad-
ditional term in the effective action. This addition is shown
to lead to the disappearance of the effect manifested for
charged bosons.

II. SPINLESS BOSONS IN BACKGROUND
MAGNETIC FIELD

We begin by considering a single spinless boson, in the
nonrelativistic limit, whose action reads2®

Tb M
AE’O:f dT?xz(T), (1)

with 7 as the proper time along the particle’s worldline. In
the presence of the electromagnetic field, one needs to add
the interaction term?’

Aeim =€ f ! dri'(nA[x(7)], (2)

a

where the dot in X denotes a derivative with respect to proper
time of the particle, which should not be confused with the
Euclidean time in target space. Here i,j=1,...,d, with d as
the dimension of space. We shall only be interested in the
study of particles immersed in an external magnetic field.
Hence, in the following we set the electric field to zero, E'
=0, and consider only the response to a magnetic field B. We
drop the interparticle Coulomb repulsion.

Since we are interested in using the single- and many-
body path integrals in first-quantized form, we are restricted
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to considering nonrelativistic physics. Standard problems
with negative probabilities and pair production would force
us to rely on the second-quantized quantum field theory lan-
guage to address the relativistic problem.

We now study the condensation of bosonic particles in a
background magnetic field, giving an alternative vantage
point on the Meissner effect, before we turn to apply the
same ideas to the study of fermionic systems. The partition
function of N identical bosons sums over all permutations P
of the particle coordinates (with no relative minus sign) is

1
Zy= ]FJ dx;-- J deE H (xp(i)’ﬂ|xi,0), (3)
! >
with

p(i) )
(xp(i),ﬁ|x,-,0) Ef Dxe e . (4)

i

We study the system at finite temperature, which is reflected
in the fact that the worldlines wrap around the imaginary
(thermal) time direction, with 7 running from 0 to S, i.e., the
action involves A= [5---dr.

Consider a general partition of the orbits of N particles
grouped into different winding cycles via permutation,

N
N= E wC,,. (5)

w=1

In this decomposition we keep track of the number of cycles
(which we denote by C,,), each of length w, so that with each
permutation we associate a series of numbers C,,, with w
=1,...,N. Then, a sum over all permutations can be rewrit-
ten as a sum over all integers assigned to the various C,,,
subject of course to an overall constraint, this constraint be-
ing that the total length of all cycles taken together must be
N (for a discussion of this point, see Ref. 28). The number of
permutations with such a decomposition is

o pupm—.L— ©)

H c,! wSw
w=1

M(C,,Cs, ..

The partition function of N bosons is a summation over dif-
ferent partitions,

N
1
Z“V)(ﬁ):]; > M(Cy,....cy]l [zwpI, (7)
*Cha.n w=1

Cy

where for each loop one has

wB
Z(wp) = f (d'x) f Dx eXpl— f dr(Mx%ifx;A")},
a 0 2 c

(8)

with the loop winding w times around the imaginary time
direction.

We consider first a single winding loop with length w. To
study the Meissner effects, we employ a standard procedure,
namely, to first expand the interaction part of the partition
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function exp(—ie[dmi;A’) as a power series, and then com-
pute the average of each term with respect to the free particle
action, which leads to corrections of the form (A", i.e.,
averages taken with respect to the free system. Define for
this particular winding loop the correction to the effective
action as AI'(wB)=Z(wB)—Zy(wpB). Here the lowest-order
nontrivial term is of order A<, and its contribution to the
Euclidean effective action reads

2
AT(wp) = 5< [ ] dexi(ﬁ)Ai[X(71)]xj(Tz)Aj[X(Tz)]> ,
0
©)

where by definition the average of the operator O with re-
spect to the free action is (O[x])g~ [d?x[Dxe™400[x], up to
a normalization factor. We will work with the Fourier trans-
form of the gauge potential A(x)=[ —Ae’mg(k), and we will
have to evaluate expectation Values of the form
(e* (12X (7)x(75))o. To do so, we expand the position
as the sum of an average and a fluctuation part, x(7)=x,
+ 0x(7), where the average is the same for all coordinates
appearing above. The desired expectation value then factor-
izes into (e'k1t%22%0) ( S (7)) 197 5 (7,)e®2(m)) . (indices
have been suppressed in an obvious fashion). The first factor
is easily shown to result in a delta function (27/L)?8(k,
+k,), ensuring momentum conservation, and we evaluate the
second factor by applying Wick’s theorem. We get

2 2
AF(WB)=2%1H J d% o8k + ky) A (k) AT (k)

G G
d’Tl de 5’ klkj__
7'2 (97'1 57'2
Xe k+k2)G’ (10)

Note that the 7 integrals now run from 0 to wf3. Here we
used the standard language of Green’s functions, which is
explained as follows: For a single particle, Green’s function
is defined as

&G (11,19) = (X (7)x(12))0, (11)

which in the path integral formalism reads

GI(TI,Tz)zfddxf DxeAeox(1))x(7). (12)

This Green’s function can be derived from the zero-
frequency limit of the finite temperature harmonic oscillator,
after subtraction of an infinite contribution due to the zero
Matsubara frequency, yielding

n-n (n-n? B
G(11,7) =— 12 2, 12/32 t13 (13)

For a many-particle system, we define Green’s function for a
particular permutation pattern as
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Xp(1)
Gy(71,7) Efdxl o dxy Dx. ..

1

) m ™
Xf Dx M=+ + A Dx(1)x(7y),
AN

(14)

or

ngN(Tl’TZ) = <xi(7'1)xj(7'2)>7>, (15)

and the result for the chosen winding loop is just the one-
particle Green’s function with g replaced by w3,

71—72+(71—Tz)2+14/_ﬁ
2 wp 12

GW(Tl’T2)=_ (16)

Furthermore, the subtracted Green’s function? is defined as

G,(Ti’Tj) = G(TiaTj)_G(Ti’Ti)' (17)

We now proceed to calculation of the correction to effective
action (10). The &-function forces k;=—k,, and since the in-
tegrand only depends on the difference 7;—7,, one of the 7
integrals can be easily calculated, giving only an overall fac-
tor. In this way Eq. (10) simplifies to

wpe’.

AT =
oM214

dkA (k) AT (- k) Q) , (18)

where all the relevant information is encapsulated in the mo-
mentum dependent function

wp 2
Q. (k) = (kK25 - kikj)f dr(— 1 + L) S =724 120P)
! 0 2 wp

(19)

When w is finite, including the case with only a single par-
ticle, the k*8/—k'k/ term will give rise to two differentials on
the gauge field when transformed back to real space, giving
the spatial part of the well-known vacuum polarization,

J ddxF,»j(x)H(— PVFI(x), (20)

with the field strength F;;(x)=3,A;(x) = d,A,(x). TI(=?) is the
self-energy of the electromagnetlc field, with corrections
arising from polarization effects induced by the bosons
which are coupled to the electromagnetic field.

In the limit w— 0, a partial integration of Eq. (19) leads
to the result

1/2

Q,(k) = (k87 - kikj)i—g(l - f

dy ewﬁ(k2/2M)(y2—1/4)>
-2

(21)

with y=7/wB—1/2. The second term in the parenthesis van-
ishes when w— . Thus the k2 term is killed, and we get a
mass term for the transverse component of the gauge field,
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AT = —J dXA;A}, (22)

with Af:(&ij—&,-aj/ @)A;. This is exactly the desired Meiss-
ner effect. The contribution to the mass term coming from a
single winding loop is

enwp

AT (wp) o N —A%, (23)

where n=N/L? is the number density. In the following, we
ignore the backreaction of A, on the condensate.

To get the mass of the gauge field, one needs to sum over
different cycle decompositions. The correction to the effec-
tive action of the whole system is

2 M({cw})H [ZO(W,B)]CWE C, AT (wp).

{Cn} w=1
(24)

The mass term is gotten by taking the thermodynamic limit
of the above equation and keeping only terms with infinite
winding. Here we need to be careful about the order of limits
to take. As shown above, only those permutation patterns
containing infinitely long winding loops (in the thermody-
namic limit) will contribute to the mass term. So we will first
take the limit that the winding number goes to infinity. To do
so, we also need to take the total number of particles N and
the size of the system L to infinity while keeping the particle
number density n=N/L¢ fixed. We employ a cutoff N, for the
winding number, which goes to infinity as the particle num-
ber N— 0, and count only those winding loops longer than
N.. For example, one can take N, to be N* with 0<a<1. In
a box with side length L, the partition function of free bosons
for a winding loop with length w is

% d
/_ 2 e L/)\) 'n'/w) , (25)

\ W p=—x

Zy(wp) = (

with the thermal de Broglie wavelength A=+273/M. Con-
sider the case of three dimensions, where Bose-Einstein con-
densation is known to occur at finite temperature and where
2/3<a<1. In the limit w—o, L/\\yw goes to zero and
Zo(wB)— 1 for w>N,. Thus for a particular cycle decompo-
sition, the contribution to the mass term from the long loops
reads

N ezn N
> C,Al(wp) ~ m( > wcw>Ai. (26)
¢ w=N,

w=N,

Here EIVLN,WCW just counts the number of long loops in this

cycle decomposition, and since it is only these long loops
which contribute, the mass square becomes
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N
2 W’CW/

2 M({C }) . w'=NC
m 2M{§'} N (H[ZO( ﬂ)]c) N

(27)
Since for w large, Zy(wB) =1, the temperature dependence is
fully encoded in the contributions from small w. When the

temperature goes to zero, Zy(wB) — 1 even for small w. The
mass square thus reads

N

> w
, en M{C,}) w=n,
m'=—
M, NN

(28)

The combinatorial factor in the above equation can be calcu-
lated by using random permutation theory.’3! It can be re-
written in the form

1 N [N/iw]
— > 2 kwP(C,=k), (29)
NW:NC k=1

where P(C,=k) is the probability of having k cycles of
length w and according to Refs. 30 and 31 is

_k[Nw]-k

P(C, -k)——_ 2 (- 1)]— (30)

We can estimate the magnitude of the combinatorial factor as
follows: For large winding number w, the probability of hav-
ing large number k of them is extremely small. Thus we can
concentrate on small k, where P(C,,=k) is approximately
e~y k. Summing over k gives roughly =kwP(C,=k)
= 1. Taking N, to be of order V"N, the combinatorial factor is
then approximately 1. Thus as the temperature goes to zero,
the mass square goes over to
m-= 78 (31)
With the closed-form formula given above, one can also cal-
culate the combinatorial factor numerically and it converges
to 1 very quickly.’?> The bottom line is that a finite value of
mass can be gotten by summing over the long winding loops.
It is conceptually the same but technically even easier to
work in the grand-canonical ensemble, where the partition
function for free bosons is

FoB) ==t (w11 2B g (3
ﬁw:l w

with the plus sign for bosons and the minus sign for fermi-
ons. In the presence of an electromagnetic field, one needs
only to replace Zy(wpB) with Z(wp). The change in the free
energy due to the background field is
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wp. (33)
w

The quantity N;=27_, .eWB" is just the number of particles
residing in the long 1(;0ps, or equivalently the number of
particles in the condensate. This can be shown by counting
the number of particles,

©

N= 2, Zy(wp)e"Pr. (34)

w=1

For small winding, Z,(wB) is approximately (L/ A\e@)d,
while for large winding it is approximately (L/N\w)?+1.
Thus N can be rewritten as

o L d o
Vo3 (L)emiS om0
w= )\\W W=N(.

where the first term represents the number of particles living
in the short loops, Ny, and the second term represents that in
the long loops. Consider again the case of three dimensions,
where the critical temperature 7. is determined by setting the
chemical potential u=0 and equating N=Ng, that is, N
=3"_(L/N)*w™?2 where \,=\27/T,M. In this way the ra-
tio of the size of the system and the thermal de Broglie
wavelength can be expressed as

L N 1/3 T 172
X=<g(3/z)> (7> ' G0

This result can be derived via standard statistical-mechanics
methods; see, for example, Ref. 24 and references therein.
One can show that when Bose-Einstein condensation occurs
(and thus u=0), the number of particles winding in the short

loops is
T 3/2
Ng=N ( E) . (37)
Thus the fraction of the particles living in the long loops is
N T 3/2
—L-1- (—) . (38)
N T,

c

When there is no condensation (and thus u<0), N,/N van-
ishes in an obvious way. The conclusion is that the mass
square of the transverse photons is determined by the number
density of the condensed particles,

2
e‘n
m?=—=<4, (39)
M
It has been shown?? using perturbation theory that for an

ideal charged Bose gas, with the Coulomb interaction ig-

nored and there is only the magnetic coupling p -X, when
there is condensation there is a Meissner effect. The inverse
screening length squared is known to be 1/\>=(e?/M)n .
The calculation above agrees perfectly with this result. Inclu-
sion of the Coulomb repulsion between the charged particles
would lead to a renormalization of the superfluid density.
These phenomena are well understood in quantum field
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theory. The above first-quantized formalism gives an alterna-
tive picture of these well-known effects.

II1. INCLUSION OF SPIN AND FERMIONIC STATISTICS

We begin by recalling that the Hilbert-space structure of a
system is given by the path integral for zero Hamiltonian
(H=0), wherein the exponent appearing in the path integral
sum consists simply of a Berry phase term of the form pq,
arising from overlaps of complete sets of position and mo-
mentum states at neighboring time slices. Consider a nonrel-
ativistic point particle system in three space dimensions,
given by the following path integral for Grassmann variables
#(7) (Ref. 24):

Z=JDO€Xp<iJ dtiﬂjé’) for j=1,2,3,  (40)

which is a pure Berry phase term. This path integral takes as
its starting point the classical mechanics of spin and can be
constructed via spin coherent states.>* The momentum con-
jugate to ¢/(z) is given by p,=—(i/4)#, the sign arising from
the Grassmann nature of #. The equation of motion forces
the variable @ to be time independent, 6/(r)=0. That the mo-
mentum is proportional to the position is a reflection of the
fact that systems that are first order in time derivatives (such
as the Dirac equation) represent constrained systems. The
second-class constraints are

The origin of the constraint lies in the fact that the transfor-
mation from Lagrangian configuration space ¢, g to the phase
space ¢, p is singular with a vanishing Jacobian determinant,
which means we cannot invert the velocities to solve for the
momenta, and results in a Hamiltonian which is defined only
on the constraint surface. Dirac® showed that such systems
can be handled if one extends the notion of Poisson brackets
to Dirac brackets, defined as

{AaB}D:{A’B}_{A’Xi}ci’j{xst}s (42)

where C™/ are the components of the matrix inverse of C,
whose elements are built from the Poisson brackets of the
constraints

Cij= {Xi’Xj}- (43)

Care must be taken that the Poisson brackets of Grassmann
valued fields are defined as3°

af g 98 If

— + 44
36, dp* aekapk) “44)

{f(gi’pj)»g( 9;"]7,')} == (
in order to satisfy natural algebraic properties and yield a

proper quantization for fermions. With these, we see that the
Dirac bracket associated with Eq. (40) is

1
{Pi, aj}D == 5511 (45)

Canonical quantization proceeds by replacing the Dirac
bracket with the anticommutator (for fermions), as
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{,}p—=il,],. Making this substitution and enforcing con-
straint (41), we have the operator equation

[ l?aj]+_25[j' (4’6)

In three dimensions, the operators # can be defined via their
matrix elements as

(al®#|B) = o, . (47)

with the range of the spinor indices «,B8=1,2 and the o
matrices being the standard Pauli matrices, after which Eq.
(46) is a simple identity for the Pauli matrices. A classical
spin vector can also be defined,

Siz— ie"fkeiek, (48)

which after canonical quantization, gives an operator repre-
sentation of the spin algebra,

[$7.87]_ = ie*s*. (49)
Now consider the addition to the zero Hamiltonian path

integral a term descrlbmg the couphng of a spin to an exter-

nal magnetic field B H=-S- B the spin vector having al-
ready been defined by Eq. (48). Taking account of Eq. (47),
we see that? matrix elements of the operator

exp(if diB - g) (50)

has the path integral representation
JDG exp[if dt:—‘(ﬁjéi+e/lef0"0’)}. (51)

The trace of operator (50) can then be computed by summing
path integral (51) over all antiperiodic paths, for which
& (7,)=—6/(7,). For zero external magnetic field this fixes the
normalization of Berry phase term (40). This normalization
simply counts the dimension of the relevant spinor represen-
tation in d dimensions,

] b="a ..
IDQ exp[if dTﬂjB’] =242 (52)

which for d=3 coincides with the dimension of the Pauli
matrices [Eq. (47)].

The free particle action [Eq. (1)] can now be modified for
the inclusion of spin degrees of freedom as follows:**

(M, i .
A.o0= dr ?x (1) - Zﬁj(r)ﬁ’(r) , (53)
while the coupling to the electromagnetic field becomes
R
Ae,int - l; 7, dr X}A + lWijejgk . (54)

This action contains an “orbital” contribution associated with
the particle’s motion x, together with a “spin” contribution
arising from the Grassmann coordinates 6. The Grassmann

PHYSICAL REVIEW B 78, 144504 (2008)

field obeys antiperiodic boundary condition with 6(7,)
=-6(7,), in contrast to the periodic boundary condition for x.

An important property of the spinful interacting action
[Egs. (53) and (54)] is an underlying worldline supersymme-
try, mixing the bosonic and fermionic degrees of freedom,
given by?*37

() =iat(7),

80/(7) = ail(7), (55)

with a as an arbitrary Grassmann parameter. We will show
that this symmetry has far reaching consequences for the
properties of the fermionic system. The nonexistence of the
Anderson-Higgs effect can be traced to a nonrenormalization
resulting from this symmetry. Note that this worldline super-
symmetry does not imply a supersymmetric system in the
target space in which the particle is embedded, which repre-
sents just a bosonic system; it acts as a shorthand for captur-
ing the particle statistics in the target space.

We now turn our attention to the study of N spin-1/2
fermions, which follows essentially the same logic as for
bosons except that now we must deal with the action given in
Egs. (53) and (54), which as already pointed out manifests a
worldline supersymmetry. In the presence of many particles,
the worldline can wind many times around the temporal di-
rection. The functional integral over the Grassmann fields we
introduced serves to keep track of the exchange statistics,

f Do expl:—1

providing a minus sign for an even winding (corresponding
to an odd permutation) and a plus sign for odd winding (cor-
responding to an even permutation), and with the proportion-
ality constant counting the number of fermionic degrees of
freedom. This sign agrees with the (—1)"~' factor in the
grand-canonical formalism [Eq. (32)].

Proceeding as we did earlier for bosons, we set the elec-
tric field to zero, pick out the long windings, and expand the
interaction term. We get for the effective action the correc-
tion

wp
f dmj@} “ (=", (56)
0

2
AT(wpB) = %<f dTlf dTZ{Xi(TI)Ai[x(Tl)]xj(TZ)Aj[x(T2)]
(4;4)2 11(7'1)‘9’(7'1)61(7'1)]7/{1(7'2)0k(72)91(72)
(57)

Here in addition to the bosonic Green’s function, we also
need the fermionic contribution

25'Gf(7'1,7'2)—<9l(7'1)9](7'2)>N0, (58)

which is calculated as
1
G{u(ThTz) = 59(7'1 -7), (59)

with 6(7) as the step function. Carrying out the steps as those
before, we get the same result for the effective actions as in
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Eq. (18), with the observation that we need to add a fermi-
onic contribution to {);;(k), which shifts the term (—%+1\,—Tﬁ)2
] .

to (—%+N—Tﬁ)2—z, that is,

Q,(k) = (K257 kikj)fWBd {( ! i>2 l]
A R TR Y

% e(kz/M)(—r/2+72/2w,8)’ (60)

and this addition will make a critical impact.

The qualitative picture remains the same for w finite.
There is still the vacuum polarization effect. However, in the
limit w—oe, the picture changes completely. The integral
appearing in ();;(k) [Eq. (60)] becomes

wp 2
f drl | = l n T l e(kz/M)(—T/2+72/2w,B)
0 2 wB) 4

[~
M N (W+2) i
=?<1 _TWe 4 Erfl[\rw/2]>, (61)

with W=WBZI(T:I and the imaginary error function given by
. 2 . . .
Erfl[x]:é oe’ dt. One can see that function (61) vanishes in

the limit w— oo; thus
limQ,-j(k) =0, (62)

Xm0
a result that can also arrived at by making a saddle-point
expansion of the left-hand side. That is to say that the con-
tribution to the effective action arising from the fermionic
part cancels precisely that of the bosonic part in the limit of
large N. In the Grassmannian language, it is the worldline
supersymmetry between the bosonic coordinate x and the
fermionic coordinate 6 that destroys the Anderson-Higgs or
Meissner effect. We note again that the Grassmann fields
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simply encapsulate the fermion signs, and it is these signs
which transform the behavior in the case of fermions in an
essential way.

IV. CONCLUSIONS

Below some finite critical temperature, infinitely long
windings proliferate in both bosonic and fermionic systems.
For the former this drives Bose-Einstein condensation, while
for the latter it occurs at the Fermi temperature 7. Owing to
the statistics of the particles involved though, the long wind-
ings generate vastly different physics. For the Bose system, it
gives rise to superfluidity for neutral systems and supercon-
ductivity for charged ones. Both are consequences of spon-
taneous symmetry breaking, breaking a global symmetry in
the neutral superfluid and a gauge symmetry for the charged
superconductor (seen as the Anderson-Higgs mechanism,
and responsible for the Meissner effect).

We have attacked the question of whether fermions can
drive spontaneous symmetry breaking of a local nature with
the tools of the signful path integral. We managed the fer-
mion signs by introducing a new Grassmannian coordinate,
leading to a supersymmetric worldline theory.?® It is super-
symmetry then that eliminates the Meissner effect for a gas
of charged fermions. The question still remains of whether
one can find an order parameter for the phase transition in-
volving fermions, even in the free case, and how to under-
stand the sharpness of the Fermi surface.
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